
Vision Paper
Faster mathematics with even less
power consumption implemented on a
mathematical engine in hardware
2022

Unique,
light integrable
mathematical
engine that
enables product
innovation and
enhances productivity
of software
development
and maintenance.

paceval.®

Copyright © 2022 paceval.® All rights reserved *Max Tegmark (physicist, cosmologist and machine learning researcher)

Why extend our mathematical engine in software …

Vision Motivation

… with a product in hardware?

… and cloud based mathematical engine …

Copyright © 2022 paceval.® All rights reserved paceval.®

Although our product already has a small binary footprint,
impressive performance and at the same time low power
consumption, we would like to improve this status.

paceval. is written in C and C++ and this is already one
of the most sustainable combinations of
programming languages.

Of course, you have the option to add faster
mathematical functions via our API. However, this also
has the disadvantage that these mathematical functions
are not as precise as those used by default in our product
paceval.*

Status

*(the expected accuracy of these faster math functions is only between 5 and 9 digits)

Source: https://greenlab.di.uminho.pt/wp-
content/uploads/2017/09/paperSLE.pdf

Copyright © 2022 paceval.® All rights reserved paceval.®

Standard neural network
processing GPU+CPU

paceval. Apple M1
(CPU only)

Power consumption >500 Watt 39 Watt
Time per image 3-5 ms 12-15 ms
Purchase costs >$7.000 $700
Running energy
costs >$850/year $45/year

MNIST benchmark comparison*

*(see document “paceval-Vision paper-'Mathematics is everywhere' Enabling sustainable distributed and decentralized mathematics.pdf”)

Copyright © 2022 paceval.® All rights reserved paceval.®

What needs to be done to create
a product in hardware based on our

product paceval.?

Copyright © 2022 paceval.® All rights reserved paceval.®

As described in our patent, paceval. internally generates and processes a linked list of atomic
calculations that represent the user's mathematical function. This linked-list processing is done in a
single C function “paceval_processDoComputationMath()” that is called by each thread.

The C source code does this processing:
1. FETCH operator and operands (e.g. “addition of 2 and 3”)
2. DECODE and DECIDE use cached result or next step EXECUTE
3. EXECUTE operator and operands (e.g. calls C function to add 2 and 3 and get result 5)
4. WRITE BACK and cache results (this includes lower and upper interval limits or errors)

Obviously this is the standard cycle used by all types of processors.

paceval. intern

… 𝑟𝑒𝑠𝑢𝑙𝑡𝑥ଵ … 𝑥௠

Processing of each atomic calculation

C source code

Thread

Copyright © 2022 paceval.® All rights reserved paceval.®

Systems based on FPGAs (Field Programmable Gate Arrays) offer
many advantages compared to conventional implementations. The
application logic in an FPGA is implemented in hardware circuitry instead of
running on an operating system, drivers, and other application software. An
FPGA can function autonomously without interference from other logic
blocks.

Efficient systems, low power consumption

FPGAs offer the possibility of developing systems that are precisely tailored
to the intended task and therefore work extremely efficiently. The power
consumption can be significantly reduced by implementing an algorithm as
an FPGA.

Accelerate software

Complex tasks are often solved by software implementations with fast
processors. FPGAs offer an excellent alternative here, which offers a
significant speed advantage over processor-based solutions through
parallelization and adaptation to the application.

Hardware option FPGA

FPGA
Device

Copyright © 2022 paceval.® All rights reserved paceval.®

Since processing is invoked for each
atomic calculation in the linked list, it

makes sense to convert this C function
“paceval_processDoComputationMath()”

to an FPGA. But how?

Copyright © 2022 paceval.® All rights reserved paceval.®

1. Get USB FPGA form factor
e.g. see https://www.crowdsupply.com/sutajio-kosagi/fomu

2. Convert C source code of “paceval_processDoComputationMath()”
to Hardware Description Language (HDL) for FPGA upload
see https://en.wikipedia.org/wiki/C_to_HDL

3. Convert additional C source code to HDL for AI, e.g. +, -, *, /, exp()
operators: multiply, add/subtract, accumulator, fused multiply-add,
divide, square-root, comparison, reciprocal, reciprocal square-root,
absolute value, natural logarithm, exponential*

see https://www.xilinx.com/products/intellectual-property/floating_pt.html

4. Add USB identification and communication, i.e. when plugging in the
USB-FPGA, the FPGA version of "paceval_processDoComputationMath()"
is used automatically for AI**

To-do list: USB FPGA and paceval.

*(this set of operators is sufficient for AI inference)
**(i.e. if only the operators in 3. are used)

Copyright © 2022 paceval.® All rights reserved paceval.®

Standard neural
network processing
GPU+CPU

paceval. Apple M1
(CPU only)

paceval. Apple M1
(CPU only) + FPGA

Power
consumption >500 Watt 39 Watt <26 Watt

(assumption)
Time per image 3-5 ms 12-15 ms <3 ms

Purchase costs >$7.000 $700 $700 + price
“product USB FPGA”

Running energy
costs >$850/year $45/year <$30/year

Expectation MNIST benchmark comparison

paceval.
Create value fast.

Contact: info@paceval.com

