
Vision Paper
New efficient coprocessor in hardware
for local intelligence
2024

Faster mathematics
with even lower power
consumption,
implemented on a
mathematical
engine in hardware.

paceval.®

Copyright © 2024 paceval.® All rights reserved

Copyright © 2024 paceval.® All rights reserved

Today’s standard approach

Nowadays, hardware with a large number of processor cores is used to
calculate inference in artificial intelligence. GPUs such as the H200 from
Nvidia have several thousand processor cores . Special solutions such as
those from Cerebras even have several hundred thousand processor cores.

The size of the systems and their power consumption is very high for
operating the processor cores and managing them. Scaling the entire
system is therefore difficult.

Hardware with cores (GPUs or CPUs)

Hardware driver

paceval.®

Nvidia DGX H200 delivered to
OpenAI by Nvidia CEO
(Picture: Greg Brockman/X)

“The hardest thing is: how does that (technology) fit in to a
cohesive, larger vision, that's going to allow you to sell 8 billion
dollars, 10 billion dollars of product a year?

And, one of the things I've always found is that you've got to start
with the customer experience and work backwards for the
technology.”

Steve Jobs, 1997

https://www.youtube.com/watch?v=oeqPrUmVz-o

paceval.®

paceval. is a mathematical engine that can calculate almost any complex mathematical
expressions. The software reads a textual description of the expressions as a mathematical
function, which may contain the basic arithmetic operations, the usual transcendental functions
(trigonometry, exponential function, etc.) and other common operations.

Expressions can contain any number of placeholders (variables). Calculations are performed
in selectable precision (32bit, 64bit and 80bit) and distributed across all available processors
for maximum speed and effectiveness.

Additionally, paceval. can also output an interval indicating the error limits due to the limited
precision of floating-point number formats.

Copyright © 2024 paceval.® All rights reserved

What is paceval.?

Copyright © 2024 paceval.® All rights reserved paceval.®

How does paceval work internally?
paceval. internally creates and processes linked lists of atomic calculations that represent the
user's mathematical expressions. Creating and processing an expression as a linked list offers
many advantages over the usual approach*, especially speed. The processing of the linked list
when actually performing a calculation with values for the variables is done in a single C function
that is called by each thread of the underlying system.

The source code performs this processing (this corresponds to the standard cycle used by all
types of processors):

FETCH - Get the operator and operands
(e.g. "addition of 2 and 3")

DECODE and DECIDE - Use the cached result
from the cache or call the next step EXECUTE

EXECUTE - Execute the operator with the operands
(e.g. call the C function to add 2 and 3 and get 5 as a result)

WRITE BACK - Cache the result of the atomic calculation
(this includes lower and upper interval limits or errors)

C source code

Processing of atomic calculation

Thread

*The usual approach is to create an expression tree from a text expression, see https://en.wikipedia.org/wiki/Binary_expression_tree.
This has the well-known disadvantages such as memory consumption and the overhead and speed loss when creating and
traversing the expression tree.

Copyright © 2024 paceval.® All rights reserved paceval.®

Mathematical functions
All mathematical functions can be calculated and combined with logical operators. This allows all financial,
stochastic, engineering and scientific functions and also all models for machine learning to be
represented. In addition, the usual standard mathematical notation can easily be used.

The following operators, partial functions and symbols are currently supported:
• Basic arithmetic operations +, -, *, /
• Logical operators NOT, AND, OR, XOR, NAND, XNOR
• Comparison operators <, >, =, >=, <=, <>
• Factorial !, fac()
• Constants pi, e
• Brackets ()
• Power/root functions ^, sqr(), sqrt(), exp()
• Logarithm functions and sigmoid function lg(), ln(), sig()
• Trigonometric functions and associated inverses sin(), cos(), tan(), cot(), asin(), acos(), atan(), acot()
• Hyperbolic functions and associated inverses sinh(), cosh(), tanh(), coth(), arsinh(), arcosh(), artanh(), arcoth()
• Numerical manipulations sgn(), abs(), round(), ceil(), floor(), rand()
• paceval specific numerical manipulations ispos(), isposq(), isneg(), isnegq(), isnull()
• Minimum and maximum min, max
• Modulo symmetric and mathematical variant %, mod

Copyright © 2024 paceval.® All rights reserved paceval.®

“Create” and “Calculate”

Essentially only two steps are necessary to perform calculations. A
computation object is first created (“Create” step) by the user passing a
function and the set of variable identifiers. Concrete calculations can then
be carried out again and again (“Calculate” step) with the object that has
been created by the user passing the values for the variables.

In the “Create” step, a list of the individual atomic calculation rules is
created with the computation object and aligned for maximum
parallelizability. The user receives back a unique ID or “token” for the
created object. Any number of computation objects can be created.

In the “Calculate” step, the calculation is carried out using the values for
the variables. The list of individual atomic calculation rules is distributed
as partial sequences across all available processors or threads in
the system in order to achieve maximum speed. In addition, complex
calculations of partial sequences that have been carried out once are
temporarily stored as a cache so that they do not have to be calculated
again if necessary.

Copyright © 2024 paceval.® All rights reserved paceval.®

A simple example in software
As an example, let’s take the following function and the subsequent calculation with the given variable
values:

 𝑓 𝑥, 𝑦 = 5 ∗ 𝑥 + exp 𝑦 for x=2.2 und y=3.3

The “Create” step will then (simplified) create this linked list in memory using the paceval library and also
set markers for possible parallelization with threads:

The “Calculate” step will then perform the calculation with a total of 2 threads. First, thread 0 is started,
which has the task of performing the entire calculation, i.e. thread 0 runs through the entire linked list. Then
thread 1 is started, which performs exp(y) for y=3.3 in parallel to thread 0. If thread 1 is faster, the result of
the parallel calculation exp(3.3) in thread 0 is used for the final addition and the entire calculation that
thread 1 covered is skipped.

Copyright © 2024 paceval.® All rights reserved paceval.®

Now the simple example in hardware 1/2

Parallelizing the calculations in hardware has enormous advantages because voltage is applied to the
different inputs of the circuit at the same time. To illustrate this, let's take the following function and the
subsequent calculation with the specified variable values:

 𝑓 𝑥, 𝑦 = 5 ∗ 𝑥 + exp 𝑦 for x=2.2 und y=3.3

The “Create” step will then (simplified) create this linked list again with the paceval library as a hardware
driver and provide it with the markers for possible parallelization. However, this list is now processed
directly on the hardware, i.e. by an electronic logic circuit, analogous to the threads in the previous
software implementation. The circuit will switch very quickly and provide the result of the calculation in
nanoseconds:

Copyright © 2024 paceval.® All rights reserved paceval.®

Now the simple example in hardware 2/2

The “Calculate” step will then perform the calculation on 2 circuits simultaneously. Circuit 0 has the task
of performing the entire calculation, i.e. it runs through the entire list. If circuit 1 requires fewer clock cycles
for exp(3.3) than 5*x, the result of the parallel calculation of exp(3.3) in circuit 1 is used for the final addition
and the entire calculation that circuit 1 covered is skipped.

Copyright © 2024 paceval.® All rights reserved

What hardware do we need for this approach?

This approach to parallelizing calculations in hardware was investigated in a validation assignment for
SPRIND by the independent Institute for Computer Science.

For this approach, we only need floating-point units (FPUs) on a hardware module, such as a
standard “Field Programmable Gate Array” (FPGA) from Intel/Altera or AMD/Xilinx. Processor cores are
only needed for the hardware driver. FPUs consume far less power than processor cores, are
inexpensive to implement, and can be arranged in large numbers in a small area.

Hardware with floating point units (FPUs)

Hardware driver

paceval.®

The stack of software, firmware and hardware that runs
everywhere and royalty-free

Unique highly scalable hardware with multiple floating point units
runs on every nanometer chip technology

Status:

available examples such as
simple to complex artificial
intelligence

available in NodeJS source
code and can be easily
adapted to other languages

available in C/C++ source
code as a trade secret and
as publicly available system-
independent libraries

available Proof of Concept
from independent institute
for computer science

Thin firmware reference implementation with multithreading
runs on every application processorruns on

every
hardware
(ARM,
FPGA,
ASIC…)

Thin hardware driver reference implementation
runs on every system

Hardware

runs on
every
system
(car,
server…)

Local app
(in the car, ...)

Private app
(on a server, ...)

Public service
(in the cloud, ...)

…
runs with
every
app or
service

Copyright © 2024 paceval.® All rights reserved paceval.®

Copyright © 2024 paceval.® All rights reserved paceval.®

Conclusion
Mathematical methods of artificial intelligence, especially neural networks, have great potential for
parallel processing when they are presented as mathematical functions. For example, the simple neural
network MNIST from example number 6 by paceval. already has 372,200 possibilities for parallelization.
This means that if a hardware module with 372,200 FPUs existed, the result would be available in
nanoseconds. And all this at a fraction of the acquisition costs, maintenance costs and power
consumption of today's standard system based on processor cores.

Parallel processing of atomic calculations on all available FPUs

At the same time, voltage is applied to all inputs

Copyright © 2024 paceval.® All rights reserved

Power consumption in comparison

Overall, according to the research of the independent Institute of Computer Science, this first reference
design has a high energy saving potential when executing artificial intelligence. When executing a
neural network, the following comparison emerges:

paceval.®

Hardware module (5.2 x 7.6 cm)

TITAN X (26.7 x 11.1 cm)

paceval. in
hardware/ASIC
256 FPUs

(values
 estimated)

paceval. in
hardware/
FPGA PL Zynq
Ultrascale+
XCZU7EV
96 FPUs

paceval.
4.24 runs
on FPGA
PS
Zynq
Ultrascale+
XCZU7EV
4 Cores

paceval.
4.24 runs
on CPU
APPLE
MAC
STUDIO
M1
20 Cores

Standard 3.0
GHz CPU +
NVIDIA
GeForce
GTX TITAN
X

< 3,4 watt3,4 watt3,4 watt68 watt 400 watt
(CPU+GPU)

Power
consumption

< 15 ms< 75 ms114 ms5 ms< 2 msProcessing
time MNIST
LeNet

$ 700 + profit
margin

$ 850$ 850$ 3.300< $ 2.000Acquisition
costs

< $5/year$5/year$5/year$ 120/year$ 700/yearOngoing
energy costs

< 0,9 kg/year0,9 kg/year0,9 kg/year95 kg/year560 kg/yearCO2 Emission
passivepassivepassiveactiveactiveCooling
< 35 cm³< 50 cm³< 50 cm³3.700 cm³> 8.000 cm³Case size

Copyright © 2024 paceval.® All rights reserved

Advantages

paceval.®

This new system can

• be patented immediately

• be developed promptly on existing FPGA hardware

• be continuously improved

• contain customer-specific floating-point units (FPUs)
for 128bit, 64bit, 32bit, 16bit, 8bit and 1bit for scaling

This new system is

• energy efficient

• maximally small in size

• extremely scalable

• very cost-effective

Hardware with floating point units (FPUs)

Hardware driver

Hardware with cores (GPUs or CPUs)

Hardware driver

improvement

today

Copyright © 2024 paceval.® All rights reserved

Immediate success

paceval.®

A company will gain several significant business advantages with its own hardware solution based on
paceval. for complex mathematics (including artificial intelligence):

1. the company can create its own patents based on this solution and issue licenses

2. the company is independent of supply chains and especially of GPU implementations

3. the company can expand its product portfolio and position itself as a full-service provider for AI-based
solutions

4. the company can expand and assume a leading role in promising markets such as the automotive
industry, industrial automation, medical technology, and consumer goods and benefit in the long term
from increasing demand with high margins

5. the company can offer customized optimization of efficiency and performance, which is particularly
attractive for industrial customers who rely on performance and energy efficiency

6. the company can develop new business areas and partnerships with cloud providers, car
manufacturers and other technology companies to offer customized solutions

The implementation and integration with existing solutions of this new hardware is easy to achieve, as
everything from specialized FPU implementations to complete systems is available.

Copyright © 2024 paceval.® All rights reserved

Example use case

paceval.®

Local intelligence in the car with the
information from the manual and
additional information about the
specific type of car.

Hello car, which engine
oil do I need and how

much can I put in?

paceval.
Create value fast.

Contact: info@paceval.com

