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Conversion of neural networks to closed-form expressions  
Examples (source code for exporting small, medium and large neural networks): 
https://github.com/paceval/paceval/tree/main/paceval%20and%20artificial%20intelligence  
    

 
 
INTRODUCTION AND OBJECTIVES OF THIS WHITE PAPER 
 

Not all software or hardware systems provide an interface capable of manipulating tensors, and 
bringing neural networks into such systems can be an expensive challenge. It will then be 
advantageous to obtain closed formulas for the outputs of such networks. I.e. one would like to have 
a closed mathematical formula for each of the output neurons of a network, where only the inputs 
of the network are entered as parameters and the trained weights of the network as constants in the 
formula. 

Closed expressions for the outputs of a neural network can also offer several advantages, making 
them an attractive option for certain applications.  

 First, closed expressions with mathematical formulas can enable efficient computation 
because they directly represent the relationship between the input and output variables 
without requiring iterative processes. This can be particularly beneficial in scenarios where 
computational resources are limited or where low-latency predictions are critical, such as in 
real-time systems or embedded devices.  

 Second, closed expressions with mathematical formulas can simplify the integration of 
neural networks with other mathematical models or systems, and enable seamless 
communication and analysis between different components. Such closed expressions can be 
created by analyzing the architecture of a neural network and manually constructing 
formulas for that specific architecture.  

 Third, the industry standard expects 99.9% or better accuracy for decisions. Because neural 
networks are black boxes, there is no transparent methodology to optimize artificial 
intelligence decisions and avoid degradation. In particular, it should be avoided that 
decisions that were made successfully in the past are decided differently today. This black 
box for AI is generally tacitly accepted. However, as Tommi Jaakkola, Professor of Electrical 
Engineering and Computer Science at MIT, puts it succinctly: “Whether it’s an investment 
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decision, a medical decision, or maybe a military decision, you don’t want to just rely on a 
‚black box‘ method”.  
Closed text format mathematical functions can provide a way to achieve industry 
standards (e.g. when patching the mathematical functions). 

 Fourth, artificial intelligence decisions are often made with limited precision due to GPU 
technology. As an example, with bfloat16 with only 2-3 significant decimal places of 
accuracy, even with a simple neural network, a possible error would be suspected at the first 
decimal place. This can be fatal because it means that objects are potentially evaluated 
completely incorrectly without background knowledge in a black box.  
A mathematical engine that processes neural networks and supports the IEEE standard for 
floating-point arithmetic such as 32-bit (float), 64-bit (double), 80-bit (extended), or future 
128-bit (quadruple) precision is evident much more precise and reliable in the 
mathematical calculations. 

This white paper describes the method to export each neural network into closed expressions with 
mathematical formulas.  

 
1. Source: Norbert Wiener, an American mathematician and philosopher known as the founder of cybernetics: 
„I shall understand by a black box a piece of apparatus [...] which performs a definite operation [...], but for 
which we do not necessarily have any information of the structure by which this operation is performed.“, s. 
https://uberty.org/wp-content/uploads/2015/07/Norbert_Wiener_Cybernetics.pdf  
 
2. Source: https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/    
 
3. Source: A Mathematical Engine is a part of a computer program or a piece of computer hardware, referred 
to as engine, responsible for efficient processing of mathematical models. A Mathematical Model is an 
abstraction of a real-life scenario, system or event that uses mathematical language to describe and predict the 
behavior, dynamics and evolution of said scenario, system or event. 
 
4. Source: The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point 
arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard 
addressed many problems found in the diverse floating-point implementations that made them difficult to use 
reliably and portably. 
 

  

 
TENSORS  
 

Modern frameworks for implementing artificial neural networks (like PyTorch, TensorFlow, 
Flux.ml and JAX) all work on the principle of performing calculations on multidimensional 
arrays called tensors. In both machine learning research and mathematics, tensors are 
multidimensional arrays that can represent a variety of mathematical objects such as 
scalars, vectors, and matrices. However, the use and interpretation of tensors in these two 
fields is somewhat different. 
 
In the mathematical sense, tensors are algebraic objects that follow specific transformation 
rules when the coordinate system is changed. They can be represented by multidimensional 
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arrays, but their true nature lies in the way they transform under different bases. Tensors 
are used in various branches of mathematics and physics to study a wide range of 
phenomena, including curvature in differential geometry, stress and strain in continuum 
mechanics, and electromagnetic fields in physics. 
 
In machine learning research, tensors are mainly used as data structures to efficiently 
represent and process multidimensional data. They are the fundamental building blocks for 
many machine learning models, especially deep learning architectures like neural networks. 
In this context, tensors are often treated as multidimensional arrays, and the focus is on 
their numerical properties and efficient computation rather than their transformation 
properties under different coordinate systems. Machine learning frameworks such as 
TensorFlow and PyTorch provide numerically optimized tensor operations, which form the 
backbone of various machine learning algorithms. 
 
 
AUTOMATIC DIFFERENTIATION 
 

All frameworks not only allow the manipulation of and calculations with tensors, but also 
provide a method for automatic differentiation. Auto-differentiation is an indispensable 
technique in artificial neural network (ANN) training because it allows for the efficient 
computation of gradients to update the model parameters. 
 
In the context of ANNs, tensors are used to represent both the data and the parameters of 
the model, facilitating the processing of multidimensional information throughout the 
network. 
 
In automatic differencing, the chain rule from calculus is used to calculate the gradient of a 
scalar loss function with respect to the parameters of the model, which are usually 
represented as tensors. The loss function quantifies the discrepancy between the network's 
predictions and the actual target values, and minimizing it is the main goal of training ANNs. 
By calculating the gradients, the learning algorithm, e.g. stochastic gradient descent or its 
variants, can adjust the parameters of the model in such a way that the loss function is 
minimized, which ultimately improves the prediction performance of the network. 
 
Modern deep learning frameworks such as TensorFlow, PyTorch, and Flux.ml offer efficient, 
built-in auto-differentiation capabilities that streamline the training process of ANNs and 
allow dealing with complex architectures. From a practical point of view, the calculation of 
the gradients is performed by modern frameworks behind the scenes: calculations are 
performed on the tensors (the so-called "forward pass") and a fully automatic, so-called 
"backward pass", calculates the gradient of all performed calculations with respect to 
certain ones Tensors (generally the tensors containing the model weights). 
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NEURAL NETWORK ARCHITECTURES 
 

Artificial neural networks are made up of a series of interconnected layers, each of which performs 
specific functions to transform the input data into meaningful representations for accurate 
predictions. These layers can be roughly classified into three general types: input, hidden, and 
output layers. The input layer is responsible for receiving the raw data, while the output layer (in the 
case of a classification task) generates the final classification probabilities or decisions. Hidden layers, 
lying between the input and output layers, are made up of a variety of layer types, each designed to 
capture specific patterns and characteristics in the data. In traditional neural network architectures, 
information flows from one layer to the next in a strictly linear manner. However, more modern 
architectures often contain multiple paths, with information flowing through various parallel layers, 
with information being re-integrated at certain points. These modern designs allow for greater 
flexibility and adaptability when processing complex data patterns and learning intricate 
representations. 

Common types of hidden layers include fully connected layers, convolutional layers, pooling layers, 
and normalization layers. Fully connected layers consist of neurons connected to all neurons in 
neighboring layers, enabling complex pattern recognition through linear combinations and non-
linear activations. Convolutional layers, which play a central role in the development of 
convolutional neural networks (CNN), use spatially local connections and shared weights to exploit 
local patterns and reduce the number of parameters, making them particularly suitable for image 
classification tasks. Pooling layers, often used in conjunction with convolutional layers, shrink the 
spatial dimensions of the input, reduce computational complexity, and provide a form of translation 
invariance. Normalization layers, like stack normalization, are used to stabilize and speed up training 
by normalizing the activations within a layer. 

CNNs are typically built by stacking multiple layers of convolution and pooling to form a hierarchical 
feature extractor, followed by one or more fully connected layers to perform the final classification. 
This architecture enables CNNs to effectively learn hierarchical features, from low-level patterns, 
such as edges and textures, to high-level abstractions, such as object parts and whole objects, 
ultimately resulting in robust and accurate classification performance. 

 
 



 

 
You can download the free paceval.-Software Development Kit at 

https://paceval.com. 

METHODS 
 
There are two general methods that can be used to automatically generate formulas for a given 
neural network: Static analysis of calculation graph or dynamic tracking. 

Dynamic tracking has the great advantage that much of the infrastructure of existing machine 
learning frameworks can be reused, which is why we chose this approach. 

 
 

DYNAMIC TRACKING WITH THE PROGRAMMING LANGUAGE JULIA 
 

The core concept of dynamic tracking is relatively simple: although these are tensor-based 
operations, each mathematical operation is ultimately performed on the elements (i.e. numbers) 
within the tensor. By replacing the numbers with a data type that not only contains the result of a 
calculation but also records all the calculations that led to that result, we can send input wrapped in 
such a record type across a network. This process would not only provide the result for a single 
input, but also the full formula of all the calculations that took place to produce the result at the 
output neurons. 

While the basic idea is quite simple, implementing it in most programming languages and machine 
learning frameworks proves difficult, either because they do not support the definition of user-
defined data types that are transparent enough to be easily sent through a neural network, or 
require very specific data types for performance reasons. For example, Python doesn't support 
defining user-defined data types in a way that makes them fully transparent to the system (meaning 
they behave the same as built-in data types), and C++-based systems often restrict the allowed data 
types for performance reasons. 

The Julia programming language is a notable exception. Designed specifically for scientific 
computing, high-performance computing, and machine learning, Julia allows fully transparent user-
defined data types to be defined. Also, most machine learning packages in Julia are written to handle 
such data types seamlessly. Therefore, we decided to implement the export methodology in the Julia 
programming language and use Flux.jl as a deep learning framework. 

 
 

IMPLEMENTATION DETAILS OF THE PROGRAM CODE 
 

The RecordFormula data type referred to in the code is quite simple. It contains an actual value 
called "val" along with a list of operations performed to get the final result: 
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In addition, we need to define standard functions for our new data type: how to construct it from 
various other data types, how to do the automatic conversion of the wrapped values, what equality 
means, etc.:  

 

 

We can now override operators and standard functions that could be used with our new data type. 
In either case, we simply perform the operation or function and store the result in the value that the 
data type wraps, and record the operations and constants that result in that value: 
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We can now wrap values in our data type, do arithmetic on them, get the result of 
the calculation with the "val" function, and use the "formula" function to find the 
calculations that led to that result. E.g.: 

 

 

At this point we are able to define and train a neural network using Flux.jl as we would in any other 
DL framework. We take an example input tensor, wrap all of its values in a RecordFormula, send that 
RecordFormula tensor through the network, and retrieve the formulas from the output. 

 
 

OVERVIEW OF THE ENTIRE WORKFLOW 
 

 

1. Prepare the data set, split off a test set for evaluation, etc. 
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2. Definition of the network architecture to be used 
3. Train the neural network on the data 
4. Wrap the elements of an input tensor into our dataset datatype 
5. Send this input tensor through the neural network 
6. Generate formulas from the operations recorded in the record data type 
7. Get everything in the textual format and save it along with input examples etc. 
8. Save example inputs and expected outputs in a format that can be used 

 
 

 
 
 

IMPROVEMENTS AND SOLUTIONS 
 

This is a very simple example implementation that already works for most neural networks, see 
“Fashion-small_net.ipynb”, “Skin_Cancer-mid_net.ipynb” and “Faces-large_net.ipynb”. There are 
potential improvements to the current dynamic method in generating formulas from neural 
networks that we have presented here. In this section these potential improvements and already 
implemented solutions are discussed. We will not discuss specific networks that use branching paths 

textutal 
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or nonlinear elements in this white paper, but we would like to mention that there are solutions for 
these networks as well (if they are needed at all). 

 
  

EXPONENTIAL GROWTH OF EXPORTED FORMULAS 
 
The generation of a closed expression for the output of a neural network becomes exponentially 
more complex as the depth of the network increases, due to the composition of the functions in 
each layer. In a deep neural network, the output is the result of a series of transformations, with 
each layer applying a set of weights and biases, followed by an activation function. With increasing 
depth, the number of functional compositions increases, which leads to a rapid increase in the 
complexity of the formula. This exponential growth results from the interactions between layers, as 
each additional layer multiplies the number of possible connections and functional combinations. 
Consequently, constructing a single closed expression for each output for such networks quickly 
becomes unsolvable. 

Our solution to mitigate the exponential growth of complexity in generating a closed expression for 
the output of a deep neural network is to introduce intermediate variables at certain layers. With 
this approach, the overall formula is broken down into several smaller expressions, each 
representing a specific part of the network. By dividing the formula in this way, we can avoid 
unnecessary repetition and reduce the overall complexity of the expression. By using intermediate 
variables that denote the output of each layer, we can express the closed-loop equation for each 
layer in terms of those variables, rather than relying on a single, unwieldy formula. This method has 
already been applied in our sample code, so the depth of the neural network is no longer a problem. 

This division and processing of the network with several smaller expressions obviously also has 
advantages on systems that allow parallel execution, such as multi-processor systems or FPGAs. 

 
 

GROWTH OF THE FORMULAS WITH INCREASING SIZE OF THE INPUTS 
 
If you want to make decisions about a large number of inputs on a small system such as an IoT or 
IIoT device via a neural network, the system must be equipped with sufficient memory. To illustrate, 
let's take the pixels of an image as inputs to the neural network. The generation of closed formulas 
for all outputs of convolutional networks (CNNs) poses a major challenge even for medium image 
sizes, since the number of formulas required increases rapidly with increasing image size, since an 
image of e.g. 640 × 480 pixels has 307,200 inputs. CNNs use convolution layers to systematically scan 
the input image and extract valuable features, requiring numerous filters operating across the 
image. Consequently, as the image size increases, the number of calculations, parameters, and 
interactions between filters and spatial positions increases, resulting in a significant expansion of the 
number of formulas required to describe the behavior of the network. This is a fundamental fact that 
cannot be circumvented. 

Larger filter sizes can help reduce the complexity of generating closed expressions for convolutional 
neural networks (CNNs) to some extent. Using larger filters allows the network to cover larger areas 
of the input image in fewer steps, reducing the number of calculations and interactions between 
filters and spatial locations. Also, by including the step size at which the filter moves across the 
image, the network can skip pixels, further reducing the number of calculations required. We used 
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this method for the large network that detects faces in images. While these techniques can mitigate 
the complexity problem to some extent, they also have certain disadvantages. Larger filters can 
result in a loss of fine-grained spatial information as the filter covers more of the image and may 
miss smaller but important features and the network loses vital information about the input image. 

A possible solution that works in general for a large number of inputs (which is not included in our 
example code) is to use a notation that makes it possible to specify recurring formulas (i.e. formulas 
that are repeatedly applied to different inputs). This approach would be a convenient means of 
representing convolution layers, since the main goal of these layers is to apply, for example, the 
same filter to an entire image. The introduction of such a notation would simplify the representation 
of convolutional layers and greatly improve the compactness of the closed formulas. 

 
  
  


